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We use a continuous acquisition, high-speed camera with integrated centroid tracking to simultaneously
measure the positions of a ring of micron-sized particles held in holographic optical tweezers. Hydrodynamic
coupling between the particles gives a set of eigenmodes, each one independently relaxing with a characteristic
decay rate �eigenvalue� that can be measured using our positional data. Despite the finite particle size, we find
an excellent agreement between the measured eigenvalues and those numerically predicted by Oseen theory
applied to the two-dimensional �2D� ring geometry. Particle motions are also analyzed in terms of the alter-
native eigenmode set obtained by wrapping onto the ring the eigenmodes of a 1D periodic chain. We identify
the modes for which the periodic chain is a good approximation to the ring and those for which it is not.
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The dynamics of colloidal suspensions are extremely im-
portant in both industrial and biological applications �1�. Hy-
drodynamic interactions play a crucial role in the dynamics
of suspended bodies and, due to their long range, are a chal-
lenging problem to tackle with theoretical and numerical
tools. Though the two body problem can be solved theoreti-
cally, many-body effects are still at the center of active de-
bate �2�. Moreover, since hydrodynamic couplings are al-
ways present, the ability to accurately describe their behavior
is crucial for the correct interpretation of various dynamical
phenomena involving many particles suspensions, i.e., when
probing elastic response of colloidal crystals �3–5�, or the
diffusion of colloidal particles in confined geometries �6–9�.

Until recently, rather than individual particles, experimen-
tal studies mainly focused on bulk properties. Optical twee-
zers �10� have been used to investigate hydrodynamic inter-
actions in two particle systems �11� and to investigate the
coupling of particles to surfaces �12�. Meiners et al. �11�
used quadrant photodiodes �13� to make rapid measurements
of the particle positions. After many minutes of averaging
the time-dependent cross correlations showed an anticorre-
lated dip. This arises because the antisymmetric motion
eigenmodes are more highly damped than the symmetric
ones and hence negative correlations persist longer. Similar
work has studied the hydrodynamic coupling between oscil-
lating particles in optical tweezers �14�.

Recently, Polin et al. reported the use of a video camera to
simultaneously measure the positions of several particles
trapped in a linear chain, comparing their correlated motion
to the predicted results for an infinite chain �15�. A water-
glycerol mixture was used as the solvent to slow down dy-
namics to a time scale accessible to a conventional video
camera. Their aim was to investigate the possibility of ob-
serving anomalous dispersion relation for the chain dynam-
ics, concluding that to observe propagating modes one has to
resort anyway to low viscosity solvents and high trap stiff-
ness. There is another good reason to find methods to study
multiparticle hydrodynamic correlations in low viscous sol-
vents. A system of N hydrodynamically coupled damped os-
cillators is characterized by a spectrum of decay rates in the
correlation matrix whose typical relative splittings are of or-

der a /rN with a particle radius and r interparticle distance. It
can be shown that for a Gaussian random process with a
self-correlation function decaying with rate �, the relative
error on � goes as the inverse square root of the total number
of sample points. Therefore to resolve the fine structure of
eigenvalues of an ensemble of order ten particles at a few
diameters distance we need to collect some 100 000 samples
or equivalently about three hours acquisition at a standard
frame rate of 25 fps, raising concerns over contamination of
the sample by free particles and stability of the optical trap
system.

As an alternative to quadrant diodes or viscosity control,
we use a high-speed video camera to monitor many particles
optically trapped in water. Commercial cameras can take im-
ages at 10 s of kHz, typically writing images to a buffer
before downloading onto a computer. Unfortunately, on-
board memory limitations restrict measurement to a few sec-
onds, insufficient for distinguishing correlations against a
random noise background.

One application driving real-time, high-speed image ac-
quisition is adaptive optics, where cameras are needed to
record wave-front data at rates up to several kHz. A Shack-
Hartmann wave-front sensor employs a microlens array to
generate a matrix of spots on an imaging array. Any local
inclination of the incident wave front causes a lateral dis-
placement of the corresponding spot �16�. To enable continu-
ous monitoring, high-speed “smart cameras” are being devel-
oped with integrated signal processing, where a
programmable logic array measures the position of each spot
�17�. In this work we use one such camera to image multiple
trapped particles and track their positions. Since it is only the
positional information which is transferred, rather than the
whole image, the bandwidth of the interface is high enough
for indefinite monitoring of the position of many particles.

We holographically trap eight 2 �m particles in a ring
and analyze their motion in terms of the predicted eigen-
modes. Using the Oseen approximation we numerically cal-
culate the eigenvalue �i.e., damping� spectrum of the eigen-
modes predicted for a ring, and compare this to that
analytically calculated for a periodic one-dimensional �1D�
linear chain. Holographic optical tweezers are now routinely
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used for dynamic control of multiparticle arrays in two �18�
and three dimensions �19–21�. Our system uses a spatial
light modulator �SLM, HoloEye LCR 2500� placed in the
Fourier plane of the sample. The trapping laser �Opus,
LaserQuantum� emits up to 2.0 W at 532 nm, which after
diffraction from the SLM and transmission through the
1.3 NA �100, Plan Neofluar objective lens, resulted in 500
mW distributed between the optical traps.

The hologram kinoform was calculated using a modified
�22� Gerchberg-Saxton algorithm �23�. Eight 2 �m diameter
silica beads were suspended in water and trapped to form a
ring, approximately 25 �m above the cover slip. The par-
ticle positions were continuously measured using a center of
mass algorithm on background subtracted images, Fig. 1,
with an accuracy of order 10 nm �24,25�. The x-y positions
for the trapped particles were continuously logged over sev-
eral minutes.

To model the anticipated behavior of the ring we describe
a generic two-dimensional configuration of N particles
through the 2N array R with components Ri

�

�i=1, . . .N , �=1,2�. Neglecting inertial terms, the equation
of motion in the presence of an external force field F takes
the form �26�

Ṙ = H�R� · F . �1�

In the large interparticle separation limit the mobility matrix
H can be approximated by the Oseen tensor �27�,
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where �0 is the drag coefficient 6	
a, the particle separation
is rij

� =Rj
�−Ri

�, rij is its modulus, and � is the Kronecker delta.
We can separate the external forces into the trapping

forces, −K ·�R, elastically restoring particle positions to R0,
and the stochastic forces S that have a vanishing average and
which are uncorrelated with system configuration at any pre-
vious time. Introducing the displacement coordinates
�R=R−R0 we can rewrite Eq. �1�:

�Ṙ = H�R� · �− K · �R + S� . �3�

The equilibrium distribution function for �R is

P��R� =
1

�2	�3N/2 det�K−1�
exp�−

K:�R�R

2kBT
� , �4�

where the covariance matrix is

	�R�R
 = kBTK−1. �5�

The high trap strength ensures that particle displacements
from equilibrium positions are small compared to interpar-
ticle distances and we can assume

H�R� � H�R0� = H0. �6�

Substituting Eq. �6� into Eq. �3� and multiplying on the right
by �R�0�, we obtain after statistical averaging

	�Ṙ�t��R�0�
 = − H0 · K · 	�R�t��R�0�
 �7�

or, in a more compact form,

Ċ�t� = − � · C�t� , �8�

where we have introduced the matrices C�t�= 	�Ṙ�t��R�0�

and �=H0 ·K.

Equation �8� represents a system of coupled linear first
order differential equations with initial conditions �5�. The
formal solution is

C�t� = e−�t · C�0� . �9�

Since � is a symmetric matrix we can diagonalize it, finding
an orthonormal basis set. Calling em the eigenmodes and �m
the corresponding eigenvalues we can rewrite Eq. �9� in the
eigencoordinates Qm=em ·�R,

D�t� · D−1�0� = e−�t, �10�

where

Dmn�t� = 	Qm�t�Qn�0�
 , �11�

�mn = �mn�m. �12�

For identical traps and vanishing hydrodynamic interactions
�a /r→0�, the diagonal elements � would be k /�0, i.e., the
autocorrelation decay rate of the isolated particles, and all of
the off-diagonal elements would be zero.

The hydrodynamic interaction between the particles in the
ring couples their motion. The off-diagonal terms are no
longer zero but can be calculated from Eq. �2�. Diagonaliza-
tion of this matrix gives the eigenvalues, i.e., the decay rates
of the independent eigenmodes. Alternatively, the eigen-
modes of a periodic chain are known to be simple sine and
cosine functions for both lateral and axial modes with peri-
ods that are rational fractions of the chain period and a short
wavelength cutoff determined by the particle spacing. The
corresponding eigenvalues are readily calculated by inserting
these eigenmodes into Eq. �3�, using Eq. �2� again to calcu-
late the coupling terms.

Figure 2 shows the predicted eigenmodes for an eight
particle ring, the known eigenmodes for the periodic chain,
and how these modes map onto a ring. As with earlier work
�15� we analyze our observations in terms of predicted eigen-
modes and check that the basis set decouples the fluctuations

2µm

FIG. 1. �Color online� Ring of eight particles held by optical
tweezers. The squares show regions of interest within which the
particles’ positions were monitored using a high speed camera.
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as a self-correlation of eigencoordinates that can be fitted
with a single exponential and where the cross correlations
are negligibly small.

Figure 3 shows the measured autocorrelation functions of
the eigenmodes of the eight particle system numerically ana-
lyzed as a ring and analytically analyzed as a 1D periodic
chain. The straight line nature of log plot, together with the
absence of significant cross correlations, confirms that both

the ring and periodic chain analyses give reasonable approxi-
mations to the real system and neither the finite particle size
nor the geometric mapping of the ring onto the periodic
chain lead to major deviations in the eigenmodes.

However, a more detailed examination of the eigenvalue
spectrum, i.e., the damping rates of the eigenmodes, reveals
some significant differences. Figure 4 shows the measured
eigenvalues of the eigenmodes for the ring and a 1D periodic
chain of eight particles. In both cases, to allow for slight
measurement uncertainty in the magnification of the image,
the precise geometry of the particles is scaled by a few per-
cent to give best agreement between the predicted and ob-
served highly damped modes. Many of these highly damped
eigenmodes of the ring and periodic chain are similar or
identical in form; not surprisingly, both analyses yield simi-
lar eigenvalues.

The largest discrepancies between the treatments occurs
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FIG. 2. The 16 eigenmodes predicted using the Oseen approxi-
mation for the ring, a periodic 1D chain, and the chain coordinate
mapped onto a ring. The ring eigenmodes are labeled a–j with �*�
denoting degeneracy. These modes are cross referenced to those of
the periodic chain, many of which occur in a different position
within the eigenmode spectrum.

FIG. 3. �Color online� The 16 measured autocorrelation func-
tions for the predicted eigenmodes for the eight particle ring and the
eight particle periodic chain. The slowest decaying eigenmodes cor-
respond to common motion of the particles, and hence are strongly
perturbed by the mechanical noise in the laboratory. The lower pan-
els show the, near-zero, cross correlation functions between the
eigenmodes.

FIG. 4. Experimental �white squares� and predicted �black
circles� decay rates for the eigenmodes of a ring and a 1D periodic
chain of eight trapped particles subject to hydrodynamic coupling.
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for eigenmodes 15 and 16 of the periodic chain whose cor-
responding eigenvalues, in the Oseen approximation, diverge
as the logarithm of the chain length �strictly, for an infinite
chain length these modes are undamped�. Eigenmode 16, the
common axial motion of the chain, maps onto azimuthal ro-
tation, which is eigenmode 14 of the ring. Eigenmode 15, the
common lateral motion of the chain, maps onto a radial
stretch, which is eigenmode 6 of the ring. More generally we
see that for the highly damped modes where hydrodynamic
forces are dominated by nearest neighbor interactions, the
agreement between analyses for the ring and the periodic
chain is high. For the low damped modes in which neighbor-
ing particles move in similar directions, the forces between
distance particles are more significant. In these cases cou-
pling across the diameter of the ring perturbs the dynamics.
The biggest discrepancy in the observations for the ring oc-
curs for the common motion eigenmodes, which we suspect
are perturbed by mechanical noise within the laboratory.

We have shown that a high-speed camera has sufficient

measurement precision to accurately resolve the weak hydro-
dynamic coupling between an array of trapped particles. We
have demonstrated the sensitivity of the technique by using it
to analyze the eigenmodes of a trapped ring and consider
how close an approximation these are to those of a periodic
1D chain. Though interparticle distances are only about three
diameters, Oseen theory, applied to the ring, succesfully pre-
dicts the experimental eigenvalues to better than 2%. We find
that the equivalence of ring and chain is superficially close
but there are also differences. The most obvious difference
arises for the modes with lowest damping, for which cou-
pling between particles across the diameter of the ring be-
comes significant, increasing significantly the damping of
these modes. Beyond applications in the study of hydrody-
namic coupling, the high-precision, high-bandwidth multi-
particle measurements made possible using these “smart
cameras” opens the opportunity for multipoint photonic force
microscopy �28�.
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